
Experience: Aging or Glitching? Why Does Android Stop
Responding and What Can We Do About It?

Mingliang Li1,2⇤, Hao Lin1⇤, Cai Liu2⇤, Zhenhua Li1
Feng Qian3, Yunhao Liu1,4, Nian Sun2, Tianyin Xu5

1Tsinghua University 2Xiaomi Technology Co. LTD 3University of Minnesota, Twin Cities
4Michigan State University 5University of Illinois Urbana-Champaign

ABSTRACT
Almost every Android user has unsatisfying experiences regarding
responsiveness, in particular Application Not Responding (ANR)
and System Not Responding (SNR) that directly disrupt user expe-
rience. Unfortunately, the community have limited understanding
of the prevalence, characteristics, and root causes of unresponsive-
ness. In this paper, we make an in-depth study of ANR and SNR
at scale based on �ne-grained system-level traces crowdsourced
from 30,000 Android systems. We �nd that ANR and SNR occur
prevalently on all the studied 15 hardware models, and better hard-
ware does not seem to relieve the problem. Moreover, as Android
evolves from version 7.0 to 9.0, there are fewer ANR events but more
SNR events. Most importantly, we uncover multifold root causes
of ANR and SNR and pinpoint the largest ine�ciency which roots
in Android’s �awed implementation of Write Ampli�cation Miti-
gation (WAM). We design a practical approach to eliminating this
largest root cause; after large-scale deployment, it reduces almost
all (>99%) ANR and SNR caused by WAM while only decreasing
3% of the data write speed. In addition, we document important
lessons we have learned from this study, and have also released our
measurement code/data to the research community.

CCS CONCEPTS
• Human-centered computing → Mobile phones; Ubiquitous
and mobile computing systems and tools; • Software and its engi-
neering → File systems management; Software testing and
debugging; Software performance.

KEYWORDS
Android; Responsiveness; Application Not Responding (ANR); Sys-
tem Not Responding (SNR); Write Ampli�cation Mitigation (WAM).

ACM Reference Format:
Mingliang Li, Hao Lin, Cai Liu, Zhenhua Li, Feng Qian, Yunhao Liu, Nian
Sun, Tianyin Xu. 2020. Experience: Aging or Glitching? Why Does Android
Stop Responding and What Can We Do About It?. In The 26th Annual
International Conference on Mobile Computing and Networking (MobiCom

⇤ Co-primary authors. Zhenhua Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3380897

’20), September 21–25, 2020, London, United Kingdom. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3372224.3380897

1 INTRODUCTION
Responsiveness is among the basic and key metrics that determine
smartphone user experience. Poor responsiveness, such as slow
rendering and frozen frames [13], would impair the productivity,
satisfaction, and engagement of users. Further on Android, if a
foreground app does not respond to user input or system broadcast
for 5 seconds, or a background app does not respond to system
broadcast for 10 seconds, an Application Not Responding (ANR)
event will be triggered and a system dialog will be displayed [11] 1.
The dialog asks users to either continue wait or kill the app, neither
of which leads to pleasant user experience. Worse still, if a critical
system thread (e.g., I/O and UI) does not respond (i.e., is blocked)
for one minute, a restart of the system will be forced [14], which
we call a System Not Responding (SNR) event.

Over the years, tremendous e�orts have been made to optimize
the responsiveness of Android systems. One example is Project
Butter [8]. It introduces triple bu�ering that bu�ers an extra graphic
frame in the GPU’s memory to improve the stability of UI frame
rate, and V-Sync that synchronizes the CPU and GPU’s parallel pro-
cessing of UI frames. Despite these e�orts, slow rendering, frozen
frames, ANR, and even SNR are still prevalent on Android [60, 61].
Although users can usually endure slow rendering and frozen
frames, they can hardly put up with ANR and SNR which have
a direct, disrupting impact on user experience. Unfortunately, little
have we understood regarding the prevalence, characteristics, and
root causes of ANR and SNR, due to the lack of large-scale mea-
surement and analysis on real-world smartphone usage. Such lack
of understandings, insights, and datasets signi�cantly hinders prac-
tical solutions to address the problem and improve user experience.

1.1 Understanding ANR and SNR at Scale
To measure and analyze ANR and SNR at scale, we build a con-
tinuous monitor infrastructure based on a customized Android
system called Android-MOD. Android-MOD records detailed traces
upon the occurrence of any ANR or SNR event, including times-
tamp, CPU and memory usage, end-to-end call stacks of related
processes (including both the app and the system services), and
the blocked threads recorded in Android event logs. We invited
the active users in Xiaomi’s smartphone community to participate
in our measurement study by installing Android-MOD on their
phones. Over 30,000 users opted in and collected data for us for

1The two timeout thresholds for de�ning ANR/SNR events are supported by HCI
studies on typical users’ tolerance of delayed UI response [15, 17, 37, 53].

https://doi.org/10.1145/3372224.3380897
https://doi.org/10.1145/3372224.3380897

three weeks, involving 15 di�erent models of Android phones. All
the data are collected with informed consent of opt-in users, and
no personally identi�able information (PII) was collected.

Our measurement reveals that ANR and SNR occur prevalently
on all our studied 15 hardware models that run Android. On av-
erage, 1.5 ANR events and 0.04 SNR events occur on an Android
system during the measurement, and the maximum number of ANR
(SNR) events reaches 37 (18) on an Android system. Also, we notice
that ANR and SNR are highly correlated in terms of occurrence
probability but weakly correlated in terms of occurrence time (i.e.,
an SNR event is usually not caused by an ANR event, and vice versa).
Surprisingly perhaps, we observe that better hardware does not
seem to relieve the problem. Among the 15 hardware models, the
six oldest and the six latest experience almost the same number of
ANR events per phone; the six oldest models experience even 50%
fewer SNR events per phone than the six latest models. Moreover,
as Android evolves from version 7.0 to 9.0 where considerable per-
formance optimizations have been added, there are 74% fewer ANR
events but 33% more SNR events. In addition, video apps and 3D
interactive games are more subject to ANR. We will delve deeper
into the above �ndings in §3.

To uncover the root causes of ANR and SNR, we build an auto-
matic pipeline to process and analyze the logs recorded by Android-
MOD from the measured phones. For each log, we �rst extract
the blocked threads, and then generate their wait-for graph [21] to
�gure out the critical thread that leads to ANR or SNR. Based on
the above processing, we classify each ANR/SNR event into the cor-
responding root-cause cluster using similar-stack analysis [23], and
manually analyze the root cause of unbiased ANR/SNR samples in
each dominant cluster. The correctness of our analysis is validated
using a di�erent set of unbiased samples.

Eventually, we discover four major root causes of ANR and SNR
events: the ine�ciency of Write Ampli�cation Mitigation [36] or
WAM (35%), lock contention among system services (21%), insu�-
cient memory (18%), and app-speci�c defects (26%). While resource
contention and under-provisioning are classic operating system
challenges and there is no silver bullet for bugs and defects in app
software engineering, we surprisingly �nd that the largest root
cause, i.e.,WAM in Android, comes from a �awed design and can
be fundamentally eliminated with a clean and complete �x.

1.2 Eliminating the Largest Root Cause
WAM is an e�ective optimization to speedup writes to �ash storage
where writing a page needs to �rst erase a whole data block. It
marks invalid pages (brought by �le deletions) in the �ash storage
using discard commands to mitigate write ampli�cation [25]. In
Android, WAM is done at real-time, given that many common op-
erations (e.g., screen unlock) could incur a number of �le deletions.
This, however, comes with an unexpected e�ect that could lead
to ANR/SNR, as shown in Figure 1. Suppose APP-1 is issuing a
delete command while APP-2 is issuing a write command. In
principle, write should not be a�ected by the delete-triggered
discard commands, since the former is synchronous while the
latter are asynchronous. But in practice, write often comes after
fsyncwhich requires the completion of all preceding discards [32].

deletewrite

ANR or SNR

delayed

APP-2 APP-1

blocked

fsync discard discard discard ... discard discardwrite

× ×
Command

Queue

Blocks

Invalid
Page

Figure 1: Android’s write ampli�cation mitigation for �ash
storage can lead to ANR or SNR events.

Consequently, discard in fact becomes quasi-asynchronous [28]
that blocks its succeeding write and leads to ANR/SNR.

A straightforward �x is to batchWAM instead of real-timeWAM.
Android implements the batchedWAM bymarking all invalid pages
in a single run, which we �nd is rather ine�ective. First, its lazy
nature (at most once a day) cannot mitigate write ampli�cation
in time. Second, once started, it cannot be interrupted and the I/O
heavy process will make the phone unresponsive. Third, if the user
kills the process, the process will restart from the head.

To address the issue, we design a practical WAM by making
batched WAM �ne-grained and non-intrusive. It records the amount
of deleted data (Sd), and uses a data-driven approach to decide a
proper threshold for Sd to trigger the execution of batchedWAM on
demand. This not only achieves timelymitigation but also amortizes
the mitigation cost. We also make our batched WAM interruptible
and resumable to cost-e�ectively guarantee responsiveness.

After rolling out our patched Android-MOD on part of the 30,000
opt-in users’ phones, our design reduces almost all (>99%) ANR
and SNR events caused by WAM. Meanwhile, the data write speed
is decreased by only 3% on average. Our design has been further
adopted by �ve stock Android systems since May 2019, bene�ting
⇠20M Android users.

1.3 Summary of Contributions
• We conduct the �rst large-scale and in-depth measurement study

of the unresponsiveness (ANR and SNR) of Android in the wild,
and con�rm their prevalence for various models of phones. We
also discover that ANR and SNR are more of a software issue
than a hardware issue.

• We present our end-to-end data collection and analysis pipeline
for deeply understanding ANR and SNR. Our collection is light-
weight and does not a�ect the performance of Android systems.
Our analysis pipeline can automatically pinpoint the root causes
of ANR and SNR.

• We carefully diagnose and practically address the largest root
cause of ANR and SNR. After real-world deployment, our solu-
tion reduces 32% ANR and 47% SNR events while only decreasing
3% of the data write speed.
Our measurement code and data have been released in part at

https://Android-Not-Respond.github.io to bene�t the community.

https://Android-Not-Respond.github.io

2 METHODOLOGY
In this section, we describe our monitoring infrastructure that con-
tinuously captures detailed data of ANR/SNR at scale (§2.1), and
our automatic pipeline for root cause analysis of ANR/SNR (§2.2).

2.1 Monitoring Infrastructure
As mentioned at the beginning of §1, ANR and SNR are both re-
sponse timeout events happening to an app process or a system
thread. Once an ANR or SNR event occurs, Android automatically
records a series of diagnostic information [2, 5–7] including:
• Timestamp of the occurrence;
• CPU and memory usage;
• Call stack of the app process (only for ANR);
• Call stacks of a prede�ned set of system service processes, such
as SystemServer and MediaServer;

• Blocked threads (recorded in Android’s event log).
Unfortunately, we �nd that the above information is insu�cient

for our study due to missing the call stacks of several important sys-
tem service processes, such as the Vold service (Android’s storage
volume daemon). This is because we constantly observe that the
target app processes interact with these system services and we in-
tend to obtain the visibility into those services that are not included
in Android’s diagnostic information. As a consequence, we are
unable to build our monitoring infrastructure without modifying
the Android framework (even with root privileges). Therefore, we
develop a customized Android system, called Android-MOD, to col-
lect additional information essential for our analysis by modifying
the code of vanilla Android versions 7.0, 8.0, and 9.0.

Our data collection requires an opt-in user device to install (or
upgrade to) Android-MOD. However, once it is installed, our data
collection is lightweight and incurs negligible runtime overhead.
Note that our modi�cations only include logging additional light-
weight system-level information by patching merely 200 lines of
code and the logging is triggered only upon the occurrences of ANR
and SNR events. Eventually, we observe only KB-level overhead for
storage and negligible overhead for CPU and memory, compared
to Android’s original diagnostic mechanism.

To study ANR and SNR at scale with our monitoring infrastruc-
ture, in Oct. 2018, we invited the active users in Xiaomi’s smart-
phone community through email to participate in our measurement
study by upgrading to Android-MOD on their phones. Eventually,
more than 30,000 users opted in, most of whom are geek users will-
ing to test experimental functionalities or systems. We explicitly
informed the opt-in users in the email that Android-MOD is a light-
weight update that will not a�ect their installed apps, relevant data,
OS version, or system performance. The recorded ANR/SNR data
was uploaded to our data server when there is WiFi connectivity.

In detail, the measurement lasted for three weeks from Nov. 1st
to Nov. 21st in 2018, involving a wide range of phones across 15
di�erent models as listed in Table 1 (all their CPUs have eight cores).

2.2 Root Cause Analysis Pipeline
To �gure out the root cause of a single ANR or SNR event, app or
system developers usually analyze its corresponding log by hand.

Table 1: Hardware and OS con�gurations of our measured
phone models, manually ordered by performance.

Model CPU Memory Storage Android Version

1 1.8 GHz 3 GB 32 GB 7.0
2 2 GHz 4 GB 64 GB 7.0
3 2 GHz 4 GB 64 GB 7.0
4 1.8 GHz 6 GB 64 GB 9.0
5 1.8 GHz 6 GB 64 GB 7.0
6 2.2 GHz 4 GB 64 GB 8.0
7 2.2 GHz 4 GB 64 GB 9.0
8 2.2 GHz 6 GB 64 GB 7.0
9 2.2 GHz 6 GB 64 GB 8.0
10 2.2 GHz 6 GB 64 GB 7.0
11 2.3 GHz 6 GB 64 GB 8.0
12 2.8 GHz 6 GB 128 GB 8.0
13 2.8 GHz 8 GB 128 GB 9.0
14 2.84 GHz 8 GB 128 GB 9.0
15 2.84 GHz 8 GB 128 GB 9.0

However, such manual analysis does not scale. Therefore, we de-
veloped an automated analysis pipeline based on the observation
that ANR/SNR events with the same root cause tend to have similar
symptoms in terms of call stack patterns and lock contention status.
Our analysis pipeline processes and analyzes the collected logs as
illustrated in Figure 2.

Analysis Pipeline for ANR Events. Recall that, for an ANR
event, we collect call stacks of the app process and system service
processes, as well as the blocked threads of the recorded processes.
We �rst decompose the call stacks of the app process into sev-
eral ones corresponding to each thread of the process. Note that
among the multiple threads of the app process, there is only one
blocked thread that is recorded as Blocked by Android. Neverthe-
less, this blocked thread (Tb) may not be the critical thread (Tc) that
is expected to be the most relevant to the root cause of the ANR
event, because the blocking of Tb might be in fact caused by other
threads of the process or even threads of system services due to
inter-process communication (IPC).

To identify Tc , we construct a wait-for graph [21] for the appli-
cation’s process, based on the wait, lock, and IPC information we
recognize in each thread’s call stack, as shown in Figure 2. In the
wait-for graph, a node stands for a thread and an edge going from
thread Ti to Tj indicates that Ti is currently blocked by Tj . Thus,
we can trace from Tb until we �nd the last thread 2 that has no
successor, which is Tc .

Having found the critical thread Tc , we remove irrelevant infor-
mation (e.g., line number, memory address, and thread ID) from the
call stacks using regular expressions that are exempli�ed in Fig-
ure 3 3. The regular expressions are diverse in terms of their lengths
and complexities, e.g., some are as simple as numbers while others

2In a very small portion (<1%) of cases, e.g., when a cycle is detected in the wait-for
graph, we can �nd multiple critical threads for an ANR event. Then, each critical
thread will be processed separately and the ANR event can simultaneously belong to
multiple root-cause clusters.
3The complete list can be found at https://Android-Not-Respond.github.io

https://Android-Not-Respond.github.io

Eventi

Traces

App/Critical
Process

Trace

Thread1

Trace

Threadk

...Decompose Analyze

Wait/Lock/IPC
Tj

Tc...

Wait-for
Graph

CPU/Memory Usage CPU Usage;

Memory Usage;

Java Functions;

Native Libraries;

Kernel Functions;

Process Names;

Number of Locks;

Length of Graph;

……

Feature Vector Vi

...

C1
C2

C3

Similar-Stack
Analysis

Regular Expression

End Node

Traces of System Services Clusters of Events

Log

Tb
Blocked
Thread

Figure 2: Work �ow of our developed pipeline for automatically analyzing the root causes of ANR and SNR events.

// The regular expressions follow the Java style

// Kernel memory address
String REGEX_KER_ADDR =
"(\\+)?0x[0-9a-fA-F]{1,10}(/0x)?[0-9a-fA-F]{1,10}";
// Native memory address
String REGEX_NATIVE_ADDR = " *#\\d+ pc [0-f]{1,16} ";
// Native function memory offset
String REGEX_OFFSET = "offset 0x[0-f]{1,16}";
// Thread ID
String REGEX_TID = "tid=\\d+";
// Java line number
String REGEX_LINE_NUMBER = ":\\d+)";

Figure 3: Examples of regular expressions used to remove
irrelevant information from the call stacks.

involve more complex patterns. We also determine the appropriate
order of applying them to avoid false removals.

The remainder of the call stacks, which contains considerable
“feature” information, is then reorganized into a feature vector. As
depicted in Figure 2, a typical feature vector mainly consists of
eight components that represent CPU usage, memory usage, Java
functions, native libraries, kernel functions, process names, the
number of locks, and the length of the wait-for graph.

Based on the above processing, we can classify an ANR event
into the corresponding root-cause cluster using similar-stack anal-
ysis [23]. If the feature vector (Vi) of an ANR event i is similar to
that (Vj) of another ANR event j , i and j will be classi�ed into the
same root-cause cluster. When measuring the similarity betweenVi
and Vj , instead of directly applying o�-the-shelf similarity metrics,
we customize the similarity metric by taking into account the high
heterogeneity across the features’ semantics, formats, and general-
ity. Speci�cally, we take the following “split-and-merge” approach:
we �rst separate all the features of each vector V into two feature
sets: Fp and Fc given their heterogeneity; we then calculate the
similarity values for Fp and Fc separately (denoted as Sp (i, j) and
Sc (i, j) respectively between Vi and Vj); �nally, we combine them
to the overall similarity denoted as S(i, j).

In our design, Fp contains CPU usage, memory consumption,
the instruction set, the app fatal signal, and the app failure code, etc.
These features tend to be “generic” in that similar measures may
also be observed during the course of normal OS/app operations. To
avoid over-�tting, we compute Sp (i, j) using the Jaccard Index [27],
a simple metric that measures the set similarity:

Sp (i, j) = � (Fp,i , Fp, j) =
|Fp,i \ Fp, j |

|Fp,i | + |Fp, j | � |Fp,i \ Fp, j |
, (1)

where � (...) is the Jaccard Index function. In contrast, Fc contains
Java functions, native libraries, kernel functions, the number of
locks, the length of the wait-for graph and process names, etc.
that are more speci�c to ANR/SNR events compared to Fp . We
therefore calculate Sc (i, j) using the term vector space model [48]
and cosine similarity [54], which provide �ne-grained, dimension-
by-dimension comparison between two feature vectors:

Sc (i, j) = cos hFc ,i , Fc ,ji =
Fc ,i · Fc ,j��Fc ,i �� ��Fc ,j�� , (2)

The �nal similarity S(i, j) is derived as the weighted average
between Sp (i, j) and Sc (i, j) where the weights are the respective
cardinalities of the set Fp and Fc .

S(i, j) =
(Õn=i, j |Fp,n |) · Sp (i, j) + (

Õ
n=i, j |Fc,n |) · Sc (i, j)Õ

m=p,c
Õ
n=i, j |Fm,n |

. (3)

Vi andVj will be classi�ed into the same root-cause cluster if S(i, j)
is above a threshold, which is empirically set to 0.95 based on our
manual inspection of representative ANR samples.

Validation. The similar-stack analysis can generate thousands
of root-cause clusters. However, we observe there are only several
dominant clusters with the largest sizes that include the majority of
ANR events. We manually analyze the dominant clusters to validate
our automated analysis pipeline. Speci�cally, for each cluster, we
�rst examine the K (empirically set to 100) samples nearest to the
cluster centroid to �nd out their root cause(s). We then analyze the
K samples furthest from the centroid, comparing their root cause(s)
with those nearest to the centroid. Our manual examination shows
that all the inspected cases are perfectly categorized with no false
positives, mainly attributed to our high similarity threshold (0.95).

Analysis Pipeline for SNR Events. For an SNR event, our col-
lected log contains the call stacks of multiple system service pro-
cesses, where only one process is �agged by Android as the critical

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.001

0.01

0.1

1

10

 ANR
 SNR

N
um

be
r o

f E
ve

nt
s

pe
r P

ho
ne

Phone Model

Figure 4: Avg. number of ANR/SNR
events per phone for each model.

0 4 8 12 16 20
Number of ANR/SNR Events

0

0.2

0.4

0.6

0.8

1

C
D

F

ANR
SNR

Min = 0
Median = 0
Mean = 0.038
Max = 18

Min = 0
Median = 0
Mean = 1.5
Max = 37

Figure 5: Number of ANR/SNR events
happening to a single phone.

0 4 8 12 16 20
Time Interval (day)

0

0.2

0.4

0.6

0.8

1

C
D

F

Min = 0
Median = 0.95
Mean = 2.19
Max = 20.14

Min = 0
Median = 2.2
Mean = 3.74
Max = 20.69

Figure 6: Time interval for consecu-
tive ANR!SNR and SNR!ANR.

process that leads to SNR. Then, we �gure out the critical thread
from this process in a similar way as in the case of ANR; the subse-
quent processing and classi�cation are similar to those of ANR.

3 MEASUREMENT RESULTS
Based on our large-scale data collection and automatic analysis
pipeline, we have multifold �ndings on Android ANR and SNR in
terms of their prevalence and characteristics, as well as in-depth
understandings of their root causes. Although our reported results
are from a single vendor (Xiaomi), we believe our �ndings are
also applicable to other vendors’ Android systems. This is because
di�erent vendors (including Xiaomi) typically adopt the same set of
core Android components while only customizing the UI elements
of the vanilla Android system [38, 40, 50, 59].

Prevalence of Unresponsiveness. Our measurement reveals
that both ANR and SNR occur prevalently on all the studied 15
phonemodels, as shown in Figure 4. On average, 1.5 ANR events and
0.04 SNR events occur on an Android phone during the three-week
measurement. The distributions of both ANRs and SNRs are skewed,
as shown in Figure 5. For ANRs, around a half (51%) of Android
phones do not experience ANR, while the maximum number of
ANR events occurred on an Android phone is 37. For SNRs, most
(97%) Android phones do not experience SNR, while the maximum
number of SNR events occurred on one phone is 18. On average,
29% Android systems encountered at least an ANR or SNR event
every ten days.

Correlations between ANRs and SNRs. Although ANRs are
signi�cantly more prevalent (40⇥) than SNRs, we notice that ANR
and SNR events are highly correlated in terms of occurrence proba-
bility for a given phone model, as shown in Figure 4. The sample
correlation coe�cient [33] between their occurrence probabilities is
as high as 0.73.

At a �rst glance, the high correlation indicates that an SNR
event is likely to be caused by an ANR event. However, our tim-
ing analysis refutes the hypothesis. We examine the time interval
between every SNR event and its most recently preceding ANR
event (“ANR!SNR”). Figure 6 shows that the median time interval
is as long as 0.95 day and the average is 2.19 days. Therefore, an
SNR event is usually not caused by an ANR event. Additionally, we
examine the time interval between every ANR event and its most

preceding SNR event (“SNR!ANR”), and �nd that an ANR event
is not caused by an SNR event, either, as shown in Figure 6.

The high correlation of ANRs and SNRs in the occurrence prob-
ability and weak correlation in the occurrence time suggest that
ANR and SNR tend to be caused at the system level. There is no
causality between ANR and SNR events.

Hardware Con�gurations. As a�ected by vendors’ propaganda
of “better hardware helps improve software responsiveness” [41, 43,
49], non-professional users might intuitively believe that a phone
with more advanced hardware experiences fewer ANR/SNR events.
Surprisingly perhaps, we can see from Figure 4 that this is not true
– hardware con�gurations have no correlations with the prevalence
of ANR. Speci�cally, among the 15 models of phones we study, the
six oldest models (Model 1–6, released between Dec. 2017 and Apr.
2018) and the six latest models (Model 10–15, released between
May. 2018 and Oct. 2018) experience almost the same number of
ANR events per phone. Detailed hardware con�gurations of the
15 phone models can be found in Table 1. On the other hand, we
notice that better hardware even appears to aggravate SNR – the
six oldest models experience 50% fewer SNR events than the six
latest models per phone. The above results clearly illustrate that
ANR and SNR are not a hardware issue.

Android Versions. As Android evolves from version 7.0 to 9.0,
considerable performance optimizations have been added to the
Android framework and the OS kernel [9, 10, 12]. Therefore, we ex-
pect ANRs and SNRs in recent Android versions to be substantially
reduced. As shown in Figure 7, compared with Android 7.0, there
are 74% fewer ANR events but 33% more SNR events happening on
Android 9.0 (per phone). This indicates that the aforementioned
performance optimizations have taken e�ect in improving the re-
sponsiveness of common apps.

However, we �nd that the system-level responsiveness (i.e., the
situation of SNR) gets worse, probably because the very new An-
droid 9.0 (released in Aug. 2018) is not quite stable and robust,
despite bearing higher performance. In comparison, Android 8.0
(released in Aug. 2017) has the best system-level responsiveness,
probably owing to its moderate performance as well as sound sta-
bility and robustness.

7.0 8.0 9.0
Android Version

10-2

10-1

100

101

N
um

be
r o

f E
ve

nt
s

pe
r P

ho
ne

ANR
SNR

Figure 7: Average number of AN-
R/SNR events per phone for each An-
droid version.

100 103

Ranking

100

104

N
um

be
r o

f A
N

R
 E

ve
nt

s

log(y)=-a*log(x)+b

Measurement
Zipf fitting

Figure 8: Ranking of apps by their
number of ANR events. Here a = 1.41
and b = 4.31.

0.1

1

10

100

1000

N
um

be
r o

f d
is

ca
rd

 C
om

m
an

ds

Screen
Unlock

App
Start

App
Install

App
 Download

App
 Uninstall

Figure 9: Number of discard com-
mands incurred by a common opera-
tion in daily use.

Table 2: Top-10 apps ordered by number of ANR events.

Application # ANR Events Category

WeChat 18060 Instant Messaging
Arena of Valor 3234 Game
Kwai 2226 Video
Mobile QQ 1722 Instant Messaging
Alipay 1638 Mobile Payment
Youku 1008 Video
Xigua Video 756 Video
Bilibili 630 Video
iQIYI 618 Video
Toutiao 597 News Browsing

Mobile Apps. Our measurement captures a total of 50,147 ANR
events, involving a total of 1,446 Android apps. When ranking these
apps by their corresponding number of ANR events (in descend-
ing order), we observe a nearly-Zipf [45] skewed distribution as
depicted in Figure 8. Among the 50,147 ANR events occurring to
1,446 apps, 30,489 (60%) are attributed to only the top-10 (0.7%) apps,
as listed in Table 2, while the remaining (40%) belong to the vast
majority (99.3%) of apps that lie in the “long tail”. The reason is
straightforward: the top-10 apps are all extremely popular in users’
daily life, thus bearing the highest probabilities of ANR. We further
analyze the top-10 apps in Table 2 in more detail. Among the 10
apps, �ve are used for video streaming, two for instant messaging,
and the remaining three are for 3D interactive gaming, mobile pay-
ment, and news browsing. Overall, the results indicate that ANR
can occur to a wide range of diverse apps. It is easy to understand
that video streaming and 3D interactive gaming are more likely to
encounter ANR, since they are both computation-intensive. Note
that although the speci�c app ranking will vary in di�erent geo-
graphic regions where the frequently-used apps usually di�er, the
top app types are expected to remain largely consistent across dif-
ferent markets [51, 55, 56]. We therefore believe that our high-level
�ndings where computationally-intensive apps are more likely to
incur ANR will hold for other Android markets or in other regions.

Root Cause Analysis. In order to uncover the root causes of
ANR and SNR, we collect 50,147 logs for ANR and 1,271 logs for SNR.
Leveraging the automatic pipeline (cf. §2.2) to process and analyze
the 51,418 logs, we acquire 1,814 root-cause clusters, among which
three dominant clusters include themajority (74%) of ANR/SNR logs.
Then, we manually analyze the root causes of 100 unbiased samples
in each dominant cluster, and discover three major root causes as
1) ine�cient Write Ampli�cation Mitigation or WAM (35%), 2) lock
contention among system services (21%), and 3) insu�cientmemory
(18%). We also validate the correctness of our manual analysis using
the method described in §2.2, and �nd the analysis accuracy to be
100%. Finally, we merge all the non-dominant clusters into a single
large cluster, whose root cause is regarded as 4) app-speci�c defects
(26%).

We closely examine the logs of the aforementioned root causes
to unravel some of their typical scenarios. We notice that lock con-
tention often arises when one system service is waiting for the
release of a resource lock preempted by another system service
involving heavy I/O tasks or having a low execution priority. Re-
garding insu�cient memory, we observe that most of the related
ANR/SNR events result from a usually time-consuming mechanism
triggered by low available memory – garbage collection [3] of An-
droid’s runtimes, which aims to free and recycle unused memory.
Unfortunately, we �nd these two root causes are hard to funda-
mentally address since resource contention and under-provisioning
are classic operating system challenges. However, some cases of
these problems are practically �xable such as deadlocks brought by
inappropriate resource contention. In particular, we discover a dead-
lock caused by the mutual IPC between the network management
process netd and the system service SystemServer. Speci�cally,
as shown in Figure 10, Process-1 and Process-2 �rst leverage IPC to
invoke an API of netd and an API of SystemServer, respectively
(1�, 2�). Then, these two APIs would attempt to establish IPC with
netd and SystemServer, respectively (3�, 4�). However, neither
attempt will be successful since the IPC thread pools of both netd
and SystemServer have been drained by previous IPCs of Process-
1 and Process-2 (for simplicity, in Figure 10 we assume only one IPC
thread is allowed in a thread pool). This �nding was then reported
to Google, who quickly acknowledged it and collaborated with us
to develop a patch for the latest version of Android [4]. In this patch,

the API of netd no longer establishes IPC with SystemSever upon
being invoked (i.e., 4� is removed) to resolve the deadlock.

Further, app-speci�c defects are even more challenging, given
that there is no silver bullet for bugs and defects in software engi-
neering. On the other hand, we �nd that the largest root cause, i.e.,
WAM in Android, comes from a �awed design and can be funda-
mentally eliminated with a clean and complete �x as to be detailed
next.

4 ADDRESSING THE INEFFICIENTWAM
In this section, we �rst describe the internals of the largest root
cause (i.e., the WAM issue) of Android ANR/SNR in §4.1, and then
design a practical approach to e�ectively eliminating the root cause
with negligible overhead in §4.2.

4.1 Analysis and Measurement
Android’s Implementation of WAM. As the storage medium
of almost all mobile phones, �ash storage comes with two unique
characteristics. On one side, reading a page (typically of 4 KB),
which is the basic data access unit in �ash storage, is direct and
fast compared to that in traditional rotating-disk storage. On the
other side, a block-level erase operation is required before writ-
ing data into a page, where a block consists of multiple (e.g., 128
or 256) pages, resulting in an undesirable e�ect known as write
ampli�cation [25] which can signi�cantly degrade the data write
speed. Consequently, a write ampli�cation mitigation (WAM) mech-
anism [47] is introduced into Android: once a page’s stored data has
been logically deleted in the �le system, WAM marks it as invalid
using the discard command. Thus, before the next write, the �ash
storage can trim a block containing invalid pages by moving valid
pages in the block to other blocks. In this way, the �ash storage can
later (e.g., when performing a write) directly erase the block that
contains only invalid pages, leading to improved write performance.

In Android, two types of WAM are provided. By default, WAM
is executed in a real-time manner. Many common operations (e.g.,
screen unlock, app start, and app install/uninstall) in daily use could
incur a number of �le deletions. Upon a �le deletion, a sequence
of discard commands are sent to the storage controller (via a
command queue in the Linux kernel), as demonstrated in Figure 1.
Each discard command is meant to mark speci�c pages as invalid,
so that the corresponding block can be trimmed when the �ash
storage is idle. In addition, when the mobile phone is idle at 3 a.m.
and under charge, Android executes WAM in a batched manner (we
call lazy WAM), which marks all the invalid pages in �ash storage
at a single run, to further mitigate the write ampli�cation problem.

The Issue with Discards. We �nd that the discard operations
have a signi�cant impact on the performance of �ash storage. To
understand that, we �rst conduct a user study to measure the num-
ber of discard commands in daily usage and the data write speed
under di�erent WAM mechanisms. Note that continuously moni-
toring the occurrence of discard or data write speed on the 30,000
opt-in users’ phones could bring non-trivial overheads. Thus, we
resort to small-scale measurements of 15 experimental phones cor-
responding to the 15 models in Table 1. For each experimental
phone, we �rst use it for a whole day in a normal manner, and then
conduct our measurements.

To count discard commands, we adopt the ftrace tool to record
every invocation of the kernel function ext4_free_blocks that
issues the discard command. Figure 9 lists the numbers of discard
commands incurred by �ve common operations, from which we
see that screen unlock incurs the fewest (9 on average) discard
commands 4 while app uninstall incurs the most (1,317 on average)
discard commands. Due to the numerous �le deletions and the
accompanying discard commands, a large amount of data (20 GB
on average) is deleted on a common Android phone every day.

Bene�ts ofWAMs. WAM (in particular real-timeWAM) is useful
and e�ective. For data write speed, we conduct benchmark experi-
ments to measure the random write speed and the sequential write
speed of each experimental phone. The former represents the worst-
case data write speed while the latter represents the best-case. The
benchmark results are listed in Figure 11, which shows that on our
studied phone models (cf. Table 1), real-time WAM can increase
the random (sequential) write speed by an average of 23% (26.6%)
compared to the lazy WAM.

The Ine�ciency of Android’s WAM. Despite bene�ting the
data write speed, real-time WAM comes with an unexpected defect
which can oftentimes lead to ANR or SNR. Speci�cally, from our
collected logs of WAM-incurred ANR/SNR events, we observe a
very common scenario as shown in Figure 1. Suppose APP-1 is
issuing a delete command while APP-2 is issuing a write com-
mand. In principle, the write command (of APP-2) should not be
a�ected by the discard commands (of APP-1), since the former
is synchronous while the latter are asynchronous (so the former
should be executed with a high priority). In practice, however, a
special synchronous command, fsync, is often issued before write
or read [32] to ensure the data consistency between memory and
storage. The specialty of fsync lies in that its execution requires
the completion of all the preceding discards. Hence, due to fsync,
discard has in fact become a quasi-asynchronous [28] command
that could block its succeeding write command, thus leading to
the ANR of APP-2 or SNR of Android.

To mitigate the defect of real-time WAM, an intuitive approach
is to adopt “lazy” WAM instead of real-time WAM. Nevertheless,
we �nd this lazy WAM mechanism can hardly meet our goal for
three reasons. First, it is performed in a too “lazy” manner (at most
once per day) and thus cannot mitigate write ampli�cation in time.
Second, once started, it cannot be interrupted; during the entire
process (which is computation-intensive and time-consuming), if
the screen is unlocked the user may well experience poor respon-
siveness. Third, if it is terminated (e.g., the user kills the process)
during the run, it will always make a “fresh” restart from the head
when executed again.

4.2 Our Practical Solution
To e�ectivelymitigate write ampli�cation in Android without bring-
ing ANR or SNR, we design a practical WAMmechanism by making

4 To understand why screen unlocks require �le deletions, we traced the end-to-end
work�ow of screen unlock.When unlocking the screen, the state of the Android system
would be changed from Screen Locked to Screen Unlocked. The state change requires
modi�cations to a few con�guration �les implemented using the AtomicFile class [1].
AtomicFile creates temporary, shadow �les that will later be removed after the �les
are successfully modi�ed.

SystemServer

IPC Thread Pool

netd

IPC Thread Pool
Process-1

④ Blocked by Process-2

③ Blocked by Process-1 ①

②
Process-2

Figure 10: A deadlock caused by the mutual IPC between netd and
SystemServer. Here an arrow represents an IPC.

Real-time Lazy Practical
0

50

100

150

Se
qu

en
tia

l W
rit

e
Sp

ee
d

(M
B/

s)

0

5

10

15

20

25

R
an

do
m

 W
rit

e
Sp

ee
d

(M
B/

s)Sequential Write
Random Write

Figure 11: Random and sequential data write
speeds using di�erent WAMmechanisms.

0 2 4 6 8 10 12 14 16
Sd (GB)

14

15

16

17

18

R
an

do
m

 W
rit

e
Sp

ee
d

(M
B/

s)

2

4

6

8

To
ta

l D
ur

at
io

n
of

 B
at

ch
ed

 W
AM

 (s
)

Random Write Speed
Total Duration of Batched WAM

Figure 12: Total duration of batched
WAM and randomwrite speed for dif-
ferent thresholds (Sd).

Real-time Practical
0

0.5

1

1.5

2

N
um

be
r o

f A
N

R
s

pe
r P

ho
ne

0

0.01

0.02

0.03

0.04

0.05

N
um

be
r o

f S
N

R
s

pe
r P

ho
neANR

SNR

Figure 13: Number of ANR/SNR
events per phone using real-time
WAM and practical WAM.

15.5 16.5 17.5 18.5
Random Write Speed (MB/s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Min = 15.52
Mean = 17.33
Median = 17.4
Max = 18.21

Baseline

Figure 14: Random write speed of our
tested 15 devices when our proposed
WAM is applied using the 6 GB threshold.

batched WAM �ne-grained and non-intrusive. The basic idea is to
strike a balance between the real-time and the lazy approach by
performingWAMwhen the amount of deleted data reaches a thresh-
old. Also, we deploy it on part of the ⇠30,000 opt-in users’ mobile
phones for performance evaluation, and further port it to multiple
stock Android systems.

Data-driven WAM. We take a data-driven approach to deter-
mine when to trigger the execution of batched WAM on demand.
We use the analysis in benchmark experiments described in §4.1
which contain two-fold information: a) random write speed and
b) total duration of batched WAM (how long it takes to ful�ll all
rounds of batched WAM in a whole day). As shown in Figure 12,
when a smaller threshold is used for Sd , write ampli�cation can be
better addressed and the randomwrite speed is expected to increase,
but the total duration of batched WAM will increase since more
rounds of batched WAM need to be executed for the same total
amount of deleted data (given that each round of batched WAM
involves non-trivial startup time and system overhead). We notice
that Sd=6 GB tends to balance the above tradeo�. We also �nd that
the 6 GB threshold works well under real workload based on our
small-scale test deployment.

In detail, we take a lightweight approach to record the total
amount of deleted data, by monitoring the invocation of every
discard command in the �le system (e.g., EXT4) of Android. Speci�-
cally, every discard command is issued through the kernel function

ext4_free_blocks(..., unsigned long count, ...), where
count denotes the number of deleted pages. Thus, the correspond-
ing amount of deleted data is calculated as count⇥4 KB, and Sd is
the accumulated amount for all discard commands.

To understand the e�ectiveness of our 6 GB threshold in real-
world scenarios, we carry out a small-scale test on 15 devices, each
corresponding to a phone model in Table 1. We perform the bench-
mark analysis similar to that in §4.1 to measure random write speed
of the 15 devices under real workloads. To obtain the performance
baseline that represents the best-case result, we �rst execute a full-
pass WAM to trim the entire storage on all devices, and then mea-
sure their average random write speed to be 17.82 MB/s. We then
ask real users to use the 15 devices while sampling their random
write speed during the course of normal operations. As depicted
in Figure 14, for the majority (80%) of the devices, the average
random write speed distributes narrowly between 17.15 MB/s and
18.21 MB/s, which are quite close to the baseline performance.

Support for Pausing and Resuming. A shortcoming of An-
droid’s batched WAM mechanism is that it cannot be interrupted
once started and thus may lead to poor responsiveness upon screen
unlock. We thus adjust the execution logic of Android’s batched
WAM so that it can be paused and resumed to provide a better user
experience. Speci�cally, we make two improvements. First, we reg-
ister a broadcast receiver for the system’s screen lock/unlock event,
so that once the screen is unlocked, the receiver will get noti�ed

and then send a signal to pause the execution of the batched WAM.
Second, we modify the batched WAM thread, which comprises a
loop of trimming page groups (a page group typically consists of
32K pages) to mitigate write ampli�cation. In our modi�cation, the
batched WAM thread responds to the pause signal by recording the
number of page groups that have already been trimmed and other
necessary states before interrupting the execution. This allows the
job to be resumed later when the screen is locked. In this way, the
phone’s perceived responsiveness in the presence of batched WAM
is signi�cantly improved.

Our patch consists of only around 150 lines of code. The logic of
detecting and responding to the pause signal as well as monitoring
Sd is implemented in the kernel; the remaining logic is implemented
in the user space.

4.3 Large-scale Evaluation and Deployment
In order to understand the real-world impact of our design, we
patched our proposed WAM mechanism to Android-MOD and sent
invitations to the original 30,000 opt-in users to participate in our
performance evaluation. This time, nearly 14,000 users opted in by
installing the patched Android-MOD. The performance evaluation
also lasted for three weeks (March 1st-21st, 2019). We observe from
Figure 13 that our design reduces 32% of the ANR events and 47%
of the SNR events per phone. Furthermore, we use the automated
analysis procedure described in §2.2 to analyze the collected logs
of the ANR and SNR events after our patch is deployed. We �nd
that almost all (>99%) of the ANR and SNR events caused by WAM
have been avoided.

We also evaluate the e�ect of our design on data write speed
through benchmark experiments (as described in §4.1). As shown
in Figure 11, after our practical WAM is applied, the random (se-
quential) write speed decreases by an average of merely 2% (3%),
compared to real-timeWAM. Given its e�ectiveness, our design has
been incorporated into �ve stock Android builds by Xiaomi since
May 2019. It is now bene�ting ⇠20M Android users every day.

5 RELATEDWORK
We discuss related work in three topics: diagnosing responsiveness
issues, optimizing storage I/O, and analyzing mobile OS logs.

DiagnosingUnresponsiveness ofMobileApplications. Prior
work has proposed approaches to detect and mitigate defects in
mobile apps that lead to unresponsiveness and other relevant per-
formance issues. First, some work utilizes dynamic approaches such
as test ampli�cation [24, 61, 62] and resource ampli�cation [58] to
study the runtime behavior of mobile apps in response to block-
ing or computation-intensive operations. Second, researchers have
employed static code analysis to pinpoint buggy code patterns
such as a lack of timeout handling [30], blocking operations in
UI threads [42], and other performance issues [34]. Moreover, the
research community has built diagnostic tools to identify the root
causes of unresponsiveness or other performance issues in mobile
systems. For example, Ravindranath et al. [46] developedAppInsight,
which instruments mobile app binaries to automatically identify
the critical path (fundamentally determining the user-perceived
latency) in user interactions; Brocanelli et al. [18] designed Hang
Doctor, an automated analysis tool that unveils the root causes of

apps’ timeout events by locating the most frequent timeout opera-
tions. Compared to the above work, our study conducts a large-scale
root cause analysis of real-world SNR and ANR events. We reveal
that, for example, the top reason of SNR/ANR is the ine�cient
WAM design in Android system.

I/O Optimization for Mobile Storage. A number of I/O opti-
mizations have been proposed for mobile storage [29, 35, 39, 44, 52].
For example, Jeong et al. [29] propose a number of I/O stack opti-
mizations specialized for smartphone storage. Nguyen et al. [39]
measure the I/O delays in Android at scale; they propose to improve
the responsiveness by prioritizing read operations over write op-
erations. In particular, the drawbacks of Android’s WAM implemen-
tation have recently been discussed. Jeong et al. [28] attribute the
quasi-asynchronous I/O (QASIO) operations as the root cause of
Android’s WAM issues, and propose to address it by prioritizing the
QASIO operations. They have also pointed out that the ine�ciency
of WAM can be e�ectively eliminated if WAM is executed in a batch
manner at the device’s convenience, as what Android’s native “lazy”
WAM does. However, they do not adopt this out of concern that I/O
performance could be gravely degraded when the discard com-
mand is not issued in time. Lee et al. [31] further propose a new �le
system called F2FS which is optimized for �ash storage. In F2FS, a
checkpoint mechanism is introduced to overcome the shortcoming
of real-time WAM by only performing QASIO operations when
checkpointing is triggered.

Compared to the above studies, our work instead strives to ad-
dress the limitations of Android’sWAMdesign in a practical manner.
Therefore, we choose to improve Android’s existing batched WAM
mechanism instead of developing a new �le system component
from scratch. Our solution only requires small changes to the cur-
rent Android OS and has been commercially adopted by multiple
stock Android systems. With regard to the I/O performance, we
observe an average of only 3% decrease in data write speed brought
by our proposed solution.

Log Analysis. The Android framework supports capturing a rich
set of logs and traces for monitoring and diagnostic purposes [2, 5–
7], such as event logs, call stacks of the Android native layer, and
call stacks of the Android kernel. The a�uent information recorded
in these logs and traces can be analyzed in depth to troubleshoot
various system-level issues. To this end, we apply the Exception
Buckets and the similar-stack analysis technique proposed in [23]
to cluster the root causes of SNR and ANR events collected from a
large number of mobile devices. We also use the wait-for graph [21]
to identify the critical thread that leads to ANR/SNR.

6 LESSONS LEARNED
We summarize several important lessons we learned from this study.

Performing Large-scale Measurement at the OS level is Fea-
sible. Large-scale, crowdsourced ANR/SNR event collection is a
prerequisite for this study. Despite the rich logs provided by An-
droid, ANR/SNR events cannot be directly captured from the user
space. We thus resort to OS modi�cation by following three philoso-
phies: (1) collecting only the necessary information (i.e., the call
stacks of several important system services), (2) making our changes
transparent to applications and their data, and (3) engineering-wise,

minimizing the modi�cations and paying attention to the code
performance. Our experiences indicate that by properly following
the above principles, it is entirely feasible to launch large-scale
measurement studies in the wild using a modi�ed mobile OS.

Applying a Principled Method to Identify Sources of Perfor-
mance Issues is Helpful. When we start this project, we envi-
sion that ANR/SNR may possibly be attributed to hardware (slow
phones), OS (ine�cient OS design), or applications (buggy appli-
cation implementation). It is therefore bene�cial to identify the
source(s) of the problem to facilitate subsequent in-depth analyses.
Our experiences dictate that investigating a wide range of phones,
OSes, and applications, despite being laborious, turns to be critical.
To this end, we study 15 models of diverse phones with 3 main-
stream Android versions (Table 1), as well as capture system-wide
ANR/SNR events for all applications. Leveraging such rich data and
through rigorous data mining, we are able to locate the sources of
the majority of our collected ANR/SNR events. Such a principled
approach eases our analysis and makes it more accountable.

Considering Inter-app andApp-OS Interactions is Important.
Traditional software engineering methods for code testing and de-
bugging typically focus on a single application. Our �ndings regard-
ing the ine�cient WAM suggest that when troubleshooting bugs
exhibited on a single app, it is also important to further consider
interplays among applications as well as those between applica-
tion and the OS, as demonstrated in Figure 1. Broadly speaking,
cross-layer, cross-app, and even cross-device issues are typically
more challenging to troubleshoot compared to their single layer/ap-
p/device counterparts. This is in particular the case in the mobile
context with a rather complex ecosystem. We believe more research
is needed in this direction through the synergy among OS, mobile
computing, and software engineering, to name a few, to facilitate
such cross-entity troubleshooting.

Simple System Tuning can Yield Great Performance Bene-
�ts. Our solution to the ine�cient WAM problem balances the
two extreme strategies: real-time WAM and daily “lazy” WAM. Our
patch, which has registered commercial deployment, only consists
of 150 lines of code. Despite a simple method, its result is encourag-
ingly positive: it completely eliminates WAM-incurred ANR/SNR
with negligible I/O performance degradation. At a high level, al-
though mobile systems are becoming increasingly sophisticated
with complex tradeo�s, the fundamental dimensions that the trade-
o�s involve remain largely unchanged, such as the I/O performance
vs. user-perceived latency in the case of WAM. It is thus important
to develop principled, developer-friendly approaches to system-
atically examine these tradeo�s and judiciously balance them by
considering real workload and users’ quality-of-experience (QoE).

Mobile Device Contextual Information can Hint System Op-
timization. Regarding improving the perceived QoE, our WAM
solution employs the screen status as a hint: the WAM operation
is paused and resumed when the screen is unlocked and locked,
respectively. In this way, WAMwill not interfere with users’ typical
foreground activities [26]. Generally speaking, modern mobile de-
vices provide a rich set of “contexts” such as sensor reading, battery
status, user engagement level, wireless network performance, and
cellular billing status, to name a few, which have registered a broad

range of real-world application [16, 19]. The mobile OS can leverage
such contextual information to guide system optimizations – an
opportunity that has been somewhat overlooked by the community.

IncorporatingDomainKnowledge intoO�-the-shelfMachine
LearningAlgorithmsHelps Improve the InferenceAccuracy.
When clustering ANR/SNR events, we initially construct a single
feature vector for each ANR/SNR event sample and directly feed all
feature vectors into the o�-the-shelf clustering algorithm [20, 22,
57]. We �nd that this leads to very poor clustering results because
the semantics of the features (e.g., the instruction set vs. memory
usage) are highly heterogeneous and it is di�cult to directly “nor-
malize” or “reconcile” the features. To overcome this limitation,
we apply our domain knowledge to enhance the machine learn-
ing (ML) algorithm performance. Speci�cally, we separate all the
features into two sets (Fp and Fc) based on their characteristics as
elaborated in §2.2. Then to accommodate their heterogeneity, we
employ di�erent similarity metrics for each set: we use the Jaccard
Index [27] for Fp to avoid over-�tting, while we leverage the cosine
similarity [48, 54] for Fc to thoroughly capture their semantics in
the similar-stack analysis, before strategically merging both simi-
larity metrics. The above process helps signi�cantly improve the
clustering accuracy and allow us to acquire the three major root
causes of ANR/SNR in an automated fashion with no false positives.
Overall, our experiences indicate that domain knowledge could
be properly applied to enhance the quality for feature selection,
representation, and measurement, which are much more important
compared to selecting the ML algorithm itself. We believe this is
applicable to applying ML to mobile system data in general.

7 CONCLUSION
This paper presents our experiences in understanding and combat-
ing ANR and SNR events (known as unresponsiveness issues) in
Android-based smartphone systems. Despite their disruptions to
mobile user experiences, ANR and SNR events are not well mea-
sured and analyzed at scale. Our study �lls the above critical gap by
conducting a large-scale crowd-sourced measurement with around
30,000 opt-in users. Collaborating with a major Android phone
vendor, we were able to deploy our continuous monitoring infras-
tructure to collect detailed logs that capture every ANR or SNR
event on users’ Android devices. We then build an automated anal-
ysis pipeline to extract relevant information and to infer the root
causes of the observed ANR and SNR events. The measurement
and analysis help us understand ANR and SNR events “in the wild”.
Most importantly, we develop a practical solution to eliminate the
largest category of ANR/SNR events that are caused by the subop-
timal WAM design in Android. Being commercially deployed, our
solution is already bene�ting nearly 20 million users.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their insightful
and detailed comments, as well as the shepherd for guiding us
through the revision process. This work is supported in part by the
National Key R&D Program of China under grant 2018YFB1004700,
the National Natural Science Foundation of China (NSFC) under
grants 61822205, 61632020 and 61632013, and the Beijing National
Research Center for Information Science and Technology (BNRist).

REFERENCES
[1] Android.org. 2019. Android AtomicFile. https://developer.android.com/reference/

android/support/v4/util/AtomicFile.
[2] Android.org. 2019. Android Event Log. https://developer.android.com/reference/

android/util/EventLog#writeEvent(int,%20java.lang.String).
[3] Android.org. 2019. Android Memory Management. https://developer.android.

com/topic/performance/memory-overview.
[4] Android.org. 2019. AOSP Patch #866871. https://android-review.googlesource.

com/c/platform/system/netd/+/866871.
[5] Android.org. 2019. Collecting Framework Call Stacks. https:

//android.googlesource.com/platform/frameworks/base/+/4f868ed/services/
core/java/com/android/server/am/ActivityManagerService.java#4920.

[6] Android.org. 2019. Collecting Kernel Call Stacks. https:
//android.googlesource.com/platform/frameworks/base.git/+/android-
4.2.2_r1/core/jni/android_server_Watchdog.cpp#55.

[7] Android.org. 2019. Collecting Native Call Stacks. https://android.googlesource.
com/platform/frameworks/base/+/56a2301/core/jni/android_os_Debug.cpp#
544.

[8] Android.org. 2019. Features of Android 4.3 Jelly Bean. https://developer.android.
com/about/versions/jelly-bean.

[9] Android.org. 2019. Help Optimize Both Memory Use and Power Consumption by
Background Optimizations. https://developer.android.com/topic/performance/
background-optimization.

[10] Android.org. 2019. Improving App Performance with ART Optimizing Pro�les
in The Cloud. https://android-developers.googleblog.com/2019/04/improving-
app-performance-with-art.html.

[11] Android.org. 2019. Keeping Your Android App Responsive. https://developer.
android.com/training/articles/perf-anr.

[12] Android.org. 2019. The Neural Networks API Provides Accelerated Computation
and Inference for Machine Learning Frameworks. https://developer.android.
com/about/versions/oreo/android-8.1#nnapi.

[13] Android.org. 2019. The Slow Rendering of Android. https://developer.android.
com/topic/performance/vitals/render.

[14] Android.org. 2019. The Source Code of Android Watchdog. https:
//android.googlesource.com/platform/frameworks/base.git/+/android-
4.3_r2.1/services/java/com/android/server/Watchdog.java.

[15] Android.org. 2019. Why Performance Matters? https://developers.google.com/
web/fundamentals/performance/why-performance-matters.

[16] Ravi Bhandari, Akshay Uttama Nambi, Venkata N Padmanabhan, and Bhaskaran
Raman. 2020. Driving Lane Detection on Smartphones using Deep Neural Net-
works. ACM Transactions on Sensor Networks 16, 1 (2020), 1–22.

[17] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. 2000. Quality is in the Eye of
the Beholder: Meeting Users’ Requirements for Internet Quality of Service. In
Proceedings of ACM CHI. 297–304.

[18] Marco Brocanelli and Xiaorui Wang. 2018. Hang Doctor: Runtime Detection and
Diagnosis of Soft Hangs for Smartphone Apps. In Proceedings of ACM EuroSys. 6.

[19] Nam Bui, Anh Nguyen, Phuc Nguyen, Hoang Truong, Ashwin Ashok, Thang
Dinh, Robin Deterding, and TamVu. 2020. Smartphone-Based SpO2Measurement
by Exploiting Wavelengths Separation and Chromophore Compensation. ACM
Transactions on Sensor Networks 16, 1 (2020), 1–30.

[20] Yizong Cheng. 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 17, 8 (1995), 790–799.

[21] Edward G Co�man, Melanie Elphick, and Arie Shoshani. 1971. System Deadlocks.
Comput. Surveys 3, 2 (1971), 67–78.

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A Density-
based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of ACM SIGKDD. 226–231.

[23] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale Analysis of Framework-speci�c Exceptions
in Android Apps. In Proceedings of ACM/IEEE ICSE. 408–419.

[24] Lu Fang, Liang Dou, and Guoqing Xu. 2015. PerfBlower: Quickly Detecting
Memory-Related Performance Problems via Ampli�cation. In Proceedings of
ECOOP. 296–320.

[25] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.
2009. Write Ampli�cation Analysis in Flash-based Solid State Drives. In Proceed-
ings of ACM SYSTOR. 10.

[26] Junxian Huang, Feng Qian, ZMorleyMao, Subhabrata Sen, and Oliver Spatscheck.
2012. Screen-o� Tra�c Characterization and Optimization in 3G/4G Networks.
In Proceedings of ACM IMC. 357–364.

[27] Paul Jaccard. 1912. The Distribution of the Flora in the Alpine Zone. New
phytologist 11, 2 (1912), 37–50.

[28] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. 2015. Boosting Quasi-asynchronous
I/O for Better Responsiveness in Mobile Devices. In Proceedings of USENIX FAST.
191–202.

[29] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. 2013.
I/O Stack Optimization for Smartphones. In Proceedings of USENIX ATC. 309–320.

[30] Xinxin Jin, Peng Huang, Tianyin Xu, and Yuanyuan Zhou. 2016. NChecker:
Saving Mobile App Developers from Network Disruptions. In Proceedings of ACM
EuroSys. 22.

[31] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS:
A New File System for Flash Storage. In Proceedings of USENIX FAST. 273–286.

[32] Kisung Lee and Youjip Won. 2012. Smart Layers and Dumb Result: IO Charac-
terization of An Android-based Smartphone. In Proceedings of ACM EMSOFT.
23–32.

[33] Joseph Lee Rodgers and W Alan Nicewander. 1988. Thirteen Ways to Look at
The Correlation Coe�cient. ASA The American Statistician 42 (1988), 59–66.

[34] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detect-
ing Performance Bugs for Smartphone Applications. In Proceedings of ACM/IEEE
ICSE. 1013–1024.

[35] Youyou Lu, Jiwu Shu, and Wei Wang. 2014. ReconFS: A Reconstructable File
System on Flash Storage. In Proceedings of USENIX FAST. 75–88.

[36] Youyou Lu, Jiwu Shu, and Weimin Zheng. 2013. Extending the Lifetime of
Flash-based Storage through Reducing Write Ampli�cation from File Systems.
In Proceedings of USENIX FAST. 257–270.

[37] Gale L Martin and Kenneth G Corl. 1986. System Response Time E�ects on User
Productivity. Behaviour & Information Technology 5, 1 (1986), 3–13.

[38] Motorola.com. 2019. Motorola Android System. https://www.motorola.com/us/
software-and-apps/android.

[39] David T Nguyen. 2014. Improving Smartphone Responsiveness Through I/O
Optimizations. In Proceedings of ACM UbiComp. 337–342.

[40] Oneplus.com. 2019. Oneplus OxygenOS. https://www.oneplus.com/oxygenos.
[41] Oneplus.com. 2019. Overview of OnePlus 6T. https://www.oneplus.com/6t?

from=head.
[42] Thanaporn Ongkosit and Shingo Takada. 2014. Responsiveness Analysis Tool

for Android Application. In Proceedings of ACM DeMobile. 1–4.
[43] Oppo.com. 2019. Overview of OPPO Reno Z. https://www.oppo.com/ae/

smartphone-reno-z/.
[44] Stan Park and Kai Shen. 2012. FIOS: A Fair, E�cient Flash I/O Scheduler.. In

Proceedings of USENIX FAST. 13–13.
[45] David MW Powers. 1998. Applications and Explanations of Zipf’s Law. In

Proceedings of ACL NeMLaP3/CoNLL. 151–160.
[46] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Ober-

miller, and Shahin Shayandeh. 2012. AppInsight: Mobile App Performance
Monitoring in The Wild. In Proceedings of USENIX OSDI. 107–120.

[47] Redhat.org. 2019. Write Ampli�cation Mitigation. https://access.redhat.
com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_
Administration_Guide/ch02s04.html.

[48] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector Space Model
for Automatic Indexing. ACM Communications 18, 11 (1975), 613–620.

[49] Samsung.com. 2019. Performance of Samsung Galaxy S10. https://www.samsung.
com/us/mobile/galaxy-s10/performance/.

[50] Samsung.com. 2019. Samsung One UI 2.0. https://www.samsung.com/global/
galaxy/apps/one-ui/.

[51] SensorTower.com. 2019. Top Apps Worldwide for Q1 2019. https://sensortower.
com/blog/top-apps-worldwide-q1-2019-downloads.

[52] Kai Shen and Stan Park. 2013. Flashfq: A Fair Queueing I/O Scheduler for Flash-
based SSDs. In Proceedings of USENIX ATC. 67–78.

[53] Ben Shneiderman. 1984. Response Time and Display Rate in Human Performance
with Computers. Comput. Surveys 16, 3 (1984), 265–285.

[54] Amit Singhal et al. 2001. Modern Information Retrieval: A Brief Overview. IEEE
Data Eng. Bull. 24, 4 (2001), 35–43.

[55] Statista.com. 2019. Leading Android App Categories in the United Kingdom 2017.
https://www.statista.com/statistics/516297/android-app-categories-uk/.

[56] Statista.com. 2019. Time Spent on Mobile App Categories in the U.S.
2019. https://www.statista.com/statistics/248343/distribution-of-time-spent-ios-
and-android-apps-by-category/.

[57] Kiri Wagsta�, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. 2001. Constrained
K-means Clustering with Background Knowledge. In Proceedings of ACM ICML.
577–584.

[58] Yan Wang and Atanas Rountev. 2016. Pro�ling The Responsiveness of Android
Applications via Automated Resource Ampli�cation. In Proceedings of IEEE/ACM
MOBILESoft. 48–58.

[59] Xiaomi.com. 2019. Xiaomi MIUI. https://en.miui.com/.
[60] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Bo Long, Yuanchao A. Huang, Jiaming

He, Tianyin Xu, and Ennan Zhai. 2019. Mobile Gaming on Personal Computers
with Direct Android Emulation. In Proceedings of ACM MobiCom. 1–15.

[61] Shengqian Yang, Dacong Yan, and Atanas Rountev. 2013. Testing for Poor
Responsiveness in Android Applications. In Proceedings of IEEE MOBS. 1–6.

[62] Pingyu Zhang and Sebastian Elbaum. 2012. Amplifying Tests to Validate Excep-
tion Handling Code. In Proceedings of IEEE ICSE. 595–605.

https://developer.android.com/reference/android/support/v4/util/AtomicFile
https://developer.android.com/reference/android/support/v4/util/AtomicFile
https://developer.android.com/reference/android/util/EventLog%23writeEvent(int,%20java.lang.String)
https://developer.android.com/reference/android/util/EventLog%23writeEvent(int,%20java.lang.String)
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://android-review.googlesource.com/c/platform/system/netd/+/866871
https://android-review.googlesource.com/c/platform/system/netd/+/866871
https://android.googlesource.com/platform/frameworks/base/+/4f868ed/services/core/java/com/android/server/am/ActivityManagerService.java%234920
https://android.googlesource.com/platform/frameworks/base/+/4f868ed/services/core/java/com/android/server/am/ActivityManagerService.java%234920
https://android.googlesource.com/platform/frameworks/base/+/4f868ed/services/core/java/com/android/server/am/ActivityManagerService.java%234920
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.2.2_r1/core/jni/android_server_Watchdog.cpp%2355
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.2.2_r1/core/jni/android_server_Watchdog.cpp%2355
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.2.2_r1/core/jni/android_server_Watchdog.cpp%2355
https://android.googlesource.com/platform/frameworks/base/+/56a2301/core/jni/android_os_Debug.cpp%23544
https://android.googlesource.com/platform/frameworks/base/+/56a2301/core/jni/android_os_Debug.cpp%23544
https://android.googlesource.com/platform/frameworks/base/+/56a2301/core/jni/android_os_Debug.cpp%23544
https://developer.android.com/about/versions/jelly-bean
https://developer.android.com/about/versions/jelly-bean
https://developer.android.com/topic/performance/background-optimization
https://developer.android.com/topic/performance/background-optimization
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/about/versions/oreo/android-8.1%23nnapi
https://developer.android.com/about/versions/oreo/android-8.1%23nnapi
https://developer.android.com/topic/performance/vitals/render
https://developer.android.com/topic/performance/vitals/render
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://android.googlesource.com/platform/frameworks/base.git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://www.motorola.com/us/software-and-apps/android
https://www.motorola.com/us/software-and-apps/android
https://www.oneplus.com/oxygenos
https://www.oneplus.com/6t?from=head
https://www.oneplus.com/6t?from=head
https://www.oppo.com/ae/smartphone-reno-z/
https://www.oppo.com/ae/smartphone-reno-z/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.samsung.com/global/galaxy/apps/one-ui/
https://www.samsung.com/global/galaxy/apps/one-ui/
https://sensortower.com/blog/top-apps-worldwide-q1-2019-downloads
https://sensortower.com/blog/top-apps-worldwide-q1-2019-downloads
https://www.statista.com/statistics/516297/android-app-categories-uk/
https://www.statista.com/statistics/248343/distribution-of-time-spent-ios-and-android-apps-by-category/
https://www.statista.com/statistics/248343/distribution-of-time-spent-ios-and-android-apps-by-category/
https://en.miui.com/

	Bookmarks
	Abstract
	1 Introduction
	1.1 Understanding ANR and SNR at Scale
	1.2 Eliminating the Largest Root Cause
	1.3 Summary of Contributions

	2 Methodology
	2.1 Monitoring Infrastructure
	2.2 Root Cause Analysis Pipeline

	3 Measurement Results
	4 Addressing the Inefficient WAM
	4.1 Analysis and Measurement
	4.2 Our Practical Solution
	4.3 Large-scale Evaluation and Deployment

	5 Related Work
	6 Lessons Learned
	7 Conclusion
	References

